
SKYSCENES: A Synthetic Dataset for Aerial Scene Understanding

Sahil Khose∗ Anisha Pal∗ Aayushi Agarwal∗ Deepanshi ∗

Judy Hoffman Prithvijit Chattopadhyay
Georgia Tech

{sahil.khose,anisha pal,judy,prithvijit3}@gatech.edu
{aayushi.agarwal007,deepanshi.asr.21}@gmail.com

huggingface.co/datasets/hoffman-lab/SkyScenes

Figure 1. Overview. SKYSCENES comprises of 33.6K aerial images curated from UAV perspectives under different weather and daytime conditions (col
1), different flying altitudes (col 2), different viewpoint pitch angles (col 3), different map layouts (rural and urban, col 5) with supporting dense pixel level
semantic, and depth annotations (col 4). SKYSCENES not only serves as a synthetic source dataset to train real-world generalizable models, but can also
augment real data for improved real-world performance.

Abstract
Real-world aerial scene understanding is limited by a
lack of datasets that contain densely annotated images
curated under a diverse set of conditions. Due to in-
herent challenges in obtaining such images in controlled
real-world settings, we present SKYSCENES, a synthetic
dataset of densely annotated aerial images captured from
Unmanned Aerial Vehicle (UAV) perspectives. We care-
fully curate SKYSCENES images from CARLA to compre-
hensively capture diversity across layout (urban and rural

*Equal Contribution

maps), weather conditions, times of day, pitch angles and
altitudes with corresponding semantic, instance and depth
annotations. Through our experiments using SKYSCENES,
we show that (1) Models trained on SKYSCENES gener-
alize well to different real-world scenarios, (2) augment-
ing training on real images with SKYSCENES data can im-
prove real-world performance, (3) controlled variations in
SKYSCENES can offer insights into how models respond to
changes in viewpoint conditions, and (4) incorporating ad-
ditional sensor modalities (depth) can improve aerial scene
understanding.
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Dataset Reproducibility Diversity Annotations Image Capture Scale
Metadata Contr. Var. Town Daytime Weather Semantic Instance Depth Altitude Perspective Resolution

Real

1 UAVid [19] ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ Med Obl. 3840× 2160 0.42K
2 AeroScapes [22] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ (Low, Med) (Obl., Nad.) 1280× 720 3.27K
3 ICG Drone [14] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ Low Nad. 6000× 4000 0.6K

Synthetic

4 MidAir [9] ✓ partial ✓ ✓ ✓ ✓ ✗ ✓ Low (Obl., Nad.) 1024× 1024 119K
5 VALID [2] ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ (Low, Med, High) Nad. 1024× 1024 6.7K
6 Espada [17] ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ (Med, High) Nad. 640× 480 80K
7 TartanAir [35] ✓ * ✓ ✓ ✓ ✓ ✗ ✓ Low (Fwd., Obl.) 640× 480 ∼ 1M
8 UrbanScene3D [16] * * ✓ * * ✗ ✗ ✗ Med Obl. 6000× 4000 128K
9 SynthAer [30] ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ (Low, Med) Obl. 1280× 720 ∼ 0.77K
10 SynDrone [25] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ (Low, Med, High) (Obl., Nad.) 1920× 1080 72K
11 SKYSCENES ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (Low, Med, High) (Fwd., Obl., Nad.) 2160× 1440 33.6K

Table 1. SKYSCENES compared with other Real and Synthetic Datasets. We compare SKYSCENES (row 11) with other real (rows 1− 3) and synthetic
(rows 4 − 10) aerial datasets across several axes: (i) Reproducibility – the ability to reproduce the same exact viewpoint under different Controlled
Variations (Contr. Var.) from fine-grained scene Metadata, (ii) Diversity – diversity of map layouts (rural, urban), weather and daytime conditions in the
provided images, (iii) Annotations – supporting dense annotations for images, (iv) Image Capture – conditions under which images are captured, and (v)
Scale – number of images. We see that while existing datasets might be lacking in a subset of criteria, SKYSCENES fulfills all of these. In reference to
altitude, Low is < 30m, Med is ∈ [30, 50]m and High is > 50m. Similarly for perspective, Fwd. is forward view with θ = 0◦, Obl. is oblique view
with θ ∈ (0◦, 90◦) and Nad. is nadir view with θ = 90◦ (θ is pitch). * indicates lack of adequate information about the dataset (from the corresponding
publication or source).

1. Introduction

We introduce SKYSCENES, a densely annotated dataset of
synthetic scenes captured from aerial (UAV) viewpoints
under diverse layout (urban and rural), weather, daytime,
pitch and altitude conditions. The setting of outdoor aerial
imagery provides unique challenges for scene understand-
ing: variability in altitude and angle of image capture,
skewed representation for classes with smaller object sizes
(humans, vehicles), size and occlusion variations of
object classes in the same image, changes in weather or
daytime conditions, etc. Naturally, training effective aerial
scene-understanding models requires access to large-scale
annotated exemplar data that have been carefully curated
under diverse conditions. Capturing such images not only
allows training models that can be robust to anticipated
test-time variations but also allows assessing model sus-
ceptibility to changing conditions. However, carefully cu-
rating and annotating such images in the real-world can
be prohibitively expensive due to various reasons. First,
densely annotating high-resolution aerial images is expen-
sive – for instance, densely annotating a single 4K image in
UAVid [19] can take up to 2 hours! Second, any effort to ex-
pand the real set to include widespread variations (weather,
time of day, pitch, altitude) would be uncontrolled (i.e.,
can’t guarantee the same viewpoint under different condi-
tions as real world is not static) and additionally would re-
quire re-annotating newly captured frames. Synthetic data
curated from simulators can help counter both of these is-
sues as – (1) labels are automatic and cheap to obtain and
(2) it is possible to recreate the same viewpoint (with the
same actor instances – vehicles, humans, etc. in the

scene) under differing conditions.
Unlike synthetic ground plane view datasets (especially for
autonomous driving [5, 21, 26, 29, 37]), synthetic datasets
for aerial imagery (see Table. 1, rows 4-10) relatively have
received less attention [2, 9, 16, 17, 25, 30, 35] Existing
synthetic datasets for aerial imagery can be lacking in a few
different aspects – complementary metadata to reproduce
existing frame viewpoints under different conditions, lim-
ited diversity, availability of dense annotations for a wide
vocabulary of classes and image capture (height, pitch) con-
ditions (see Table. 1 for an exhaustive summary). We cover
all these aspects by introducing SKYSCENES, a synthetic
dataset containing 33.6K densely annotated aerial scenes
captured from CARLA [7]. We curate SKYSCENES im-
ages by re-purposing the CARLA [7] simulator for aerial
viewpoints by re-positioning the agent camera to a de-
sired altitude and pitch to obtain an oblique perspective.
SKYSCENES images are coupled with dense semantic, in-
stance segmentation (28 classes) and depth annotations.
We carefully curate SKYSCENES images by procedurally
teleoperating the aerially situated camera through 8 distinct
map layouts across 5 different weather and daytime con-
ditions each over a combination of 3 altitude and 4 pitch
variations (see Fig. 1 for examples). While doing so, we
keep several important desiderata in mind. First, we ensure
that stored snapshots are not correlated, to promote diverse
viewpoints within a town and facilitate model training. Sec-
ond, we store all metadata associated with the position of
actors, camera, and other scene elements to be able to re-
produce the same viewpoints under different weather and
daytime conditions. Thirdly, we ensure that the generated
data is physically realistic. This involves introducing vari-
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ations in sensor locations, such as adding jitter to specified
height and pitch values, to mimic real-world conditions.1

Finally, since CARLA [7] by default does not spawn a lot
of pedestrians in a scene, we propose an algorithm to en-
sure adequate representation of humans in the scene while
curating images (see Sec. 3.1 and Sec. 3.2 for a detailed
discussion).
Empirically, we demonstrate the utility of SKYSCENES in
several different ways. First, we show that SKYSCENES is
a “good” pre-training dataset for real-world aerial scene un-
derstanding by – (1) demonstrating that models trained on
SKYSCENES generalize well to multiple real-world datasets
and (2) that SKYSCENES pretraining can help reduce data
requirements from the real-world (improved real-world per-
formance in low-shot regimes). Second, we show that
controlled variations in SKYSCENES can serve as a di-
agnostic test-bed to assess model sensitivity to weather,
daytime, pitch, altitude, and layout conditions – by test-
ing SKYSCENES trained models in unseen SKYSCENES
conditions. Finally, we show that SKYSCENES can en-
able developing multi-modal segmentation models with im-
proved aerial-scene understanding capabilities when addi-
tional sensors, such as Depth, are available. To summarize,
we make the following contributions:

• We introduce, SKYSCENES, a densely-annotated dataset
of 33.6k synthetic aerial images. SKYSCENES contains
images from different altitude and pitch settings, encom-
passing different layouts, weather, and daytime condi-
tions with corresponding dense annotations and view-
point metadata.

• We demonstrate that SKYSCENES pre-trained mod-
els generalize well to real-world scenes and that
SKYSCENES data can effectively augment real-world
training data for improved performance.

• We show that SKYSCENES alone can serve as a diag-
nostic test-bed to assess model sensitivity to changing
weather, daytime, pitch, altitude and layout conditions.

• Finally, we show that incorporating additional modalities
(depth) while training aerial scene-understanding models
can improve aerial scene recognition, enabling develop-
ment of multi-modal segmentation models.

2. Related Work

Ground-view Synthetic Datasets. Real world ground-
view scene-understanding datasets (Cityscapes [5], Mapil-
lary [21], BDD-100K [37], Dark Zurich [28]) fail to capture
the full range of variations that exist in the world. Syn-
thetic data is a popular alternative for generating diverse
and bountiful views. GTAV [29], Synthia [26] and VisDA-
C [23] are some of the widely-used synthetic datasets.

1Moreover, through rigorous validations, we ensure this process is con-
sistent and yields error-free re-generations. See Sec. 3.1

These datasets can be curated using underlying simulators,
such as the GTAV [29] game engine and CARLA [7] simu-
lator, and offer a cost-effective and scalable way to gener-
ate large amounts of labeled data under diverse conditions.
Similar to SELMA [33] and SHIFT [32], we use CARLA [7]
as the underlying simulator for SKYSCENES.
Real-World Aerial Datasets. To support remote sensing
applications, it is crucial to have access to datasets that
offer aerial-specific views. Datasets such as GID [34],
DeepGlobe [6], ISPRS2D [27], and FloodNet [24] primar-
ily provide nadir perspectives and are designed for scene-
recognition and understanding tasks. However, this study
specifically focuses on lower altitudes, which are more
relevant to UAVs, enabling object identification. Unfor-
tunately, there is a scarcity of high-resolution real-world
datasets based on UAV imagery that emphasize on ob-
ject identification. Many existing urban scene datasets,
like Aeroscapes [22], UAVid [19], VDD [1], UDD [4],
UAVDT [8], VisDrone [38], Semantic Drones [14] and oth-
ers, suffer from limited sizes and a lack of diverse images
under different conditions. This limitation raises concerns
regarding model robustness and generalization.
Synthetic Aerial Datasets. Simulators can facilitate af-
fordable, reliable, and quick collection of large synthetic
aerial datasets, which aids in fast prototyping, improves
real-world performance by enhancing robustness, and en-
ables controlled studies on varied conditions. One such
high-fidelity simulator, AirSim [31], used for the devel-
opment and testing of autonomous systems (in particu-
lar, aerial vehicles), is the foundation of several synthetic
UAV-based datasets like MidAir [9], Espada [17], Tartan
Air [35], UrbanScene3d [16] and VALID [2]. CARLA [7]
is another such open-source simulator that is the founda-
tion of datasets like SynDrone[25]. However, these datasets
fall short in capturing real-world irregularities, lack deter-
ministic re-generation capabilities, controlled diversity in
weather and daytime conditions, and exhibit skewed repre-
sentation for certain classes (differences summarized in Ta-
ble. 1). This restricts their ability to generalize well to real-
world datasets and their usage as a diagnostic tool for study-
ing the controlled effect of diversity on the performance of
computer vision perception tasks. To enable such studies,
SKYSCENES offers images featuring varied scenes, diverse
weather, daytime, altitude, and pitch variations while in-
corporating real-world irregularities and addressing skewed
class representation along with simultaneous depth, seman-
tic, and instance segmentation annotations.

3. SKYSCENES

We curate SKYSCENES using, CARLA [7]2 0.9.14, which
is a flexible and realistic open-source autonomous vehicle

2https://carla.org/
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simulator. The simulator offers a wide range of sensors, en-
vironmental configurations, and varying rendering configu-
rations.
As noted earlier, we take several important considerations
into account while curating SKYSCENES images. These in-
clude strategies for obtaining diverse synthetic data and em-
bedding real-world irregularities, avoiding correlated im-
ages, addressing skewed class representations and more. In
this section, we first discuss such desiderata, and then de-
scribe our procedural image curation algorithm. Finally, we
describe different aspects of the curated dataset.

3.1. (Synthetic) Aerial Image Desiderata

Before delving into the image curation pipeline, we first
outline a set of desiderata taken into account while curat-
ing synthetic aerial images in SKYSCENES.
1. Adequate Height Variations: Aerial images are cap-
tured at different altitudes to meet specific needs. Lower
altitudes (5-15 m) are optimal for high-resolution photog-
raphy and detailed inspections. Altitudes ranging from
30m-50m strike a balance between fine-grained detail and
a broader perspective, making them ideal for surveillance.
Altitudes above 50m are suitable for capturing extensive ar-
eas, making them ideal for surveying and mapping. Exist-
ing datasets (synthetic or real) often focus on “specific” alti-
tude ranges (see Table. 1, Image Capture columns), limiting
their adaptability to different scenarios. With SKYSCENES,
our aim is to provide flexibility in altitude sampling, thus
accommodating various real-world requirements. We cu-
rate SKYSCENES images at heights of 15m, 35m and 60m.
Additionally, recognizing imperfections in real-world ac-
tuation, we induce slight jitter in the height values (jitter
∆h ∼ N (1, 2.5m)) to simulate realistic data sampling.
2. Adequate Pitch Variations: Similar to height, aerial
images can be captured from 3 primary perspectives or pitch
angles (θ): nadir (θ = 90◦), oblique (θ ∈ (0◦, 90◦)),
or forward (θ = 0◦) views (see Table. 1, Image Capture
columns). The nadir view (directly perpendicular to the
ground plane), preserves object scale while forward views
are well-suited for tasks like UAV navigation and obsta-
cle detection. Oblique views, on the other hand, capture
objects from a side profile, aiding object recognition and
providing valuable context and depth perspective often lost
in nadir and forward views. To ensure widespread utility,
SKYSCENES data generation process is designed to sup-
port all these viewing angles, with a particular emphasis
on oblique views (most common one). Similar to height,
pitch variations allow models trained on SKYSCENES to
generalize to different real-world conditions. We use θ =
45◦ and 60◦ for oblique-views and introduce jitter (jitter
∆θ ∼ N (1, 5◦)) to mimic real-world data sampling.
3. Adequate Map Variations: In addition to sensor loca-
tions, it is equally important to curate aerial images across
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Figure 2. Ground-View vs Aerial-View Pixel Proportions. For a subset
of commonly annotated classes across Cityscapes [5] (red), UAVid [19]
(dark blue) and SKYSCENES (light blue), we show the percentage of pix-
els occupied by different classes. Aerial scenes (in UAVid) have significant
under-representation of tail classes (vehicle, human). SKYSCENES im-
age curation (for the same viewpoint settings as UAVid) helps counter this
discrepancy via synthetic aerial scenes.

diverse scene layouts. To ensure adequate map variations,
we gather images from 8 different CARLA [7] towns (can
be categorized as urban or rural), which provide substan-
tial variations in the observed scene. These towns differ in
layouts, size, road map design, building design, and veg-
etation cover. Fig. 5 illustrates how images curated from
different towns in CARLA [7] differ in class distributions.
4. Adequate Weather & Daytime Variations: Training
robust perception models using SKYSCENES that gener-
alize to unforeseen environmental conditions necessitates
the curation of annotated images encompassing various
weather and daytime scenarios. To accomplish this, we gen-
erate SKYSCENES images from identical viewpoints under
5 different variations – ClearNoon, ClearSunset, MidRain-
Noon, ClearNight and CloudyNoon.3 Generating images in
different conditions from the same perspectives allows us
to (1) leverage diverse data for improved generalization and
(2) systematically investigate the susceptibility of trained
models to variations in daytime and weather conditions.
5. Fine-grained Annotations: To support a host of differ-
ent computer vision tasks (segmentation, detection, multi-
modal recognition), we curate all SKYSCENES images with
dense semantic, instance segmentation and depth annota-
tions. We provide semantic annotations for a wide vocabu-
lary of 28 classes to support broad applicability (see Fig. 1
column 4 for an example).
6. Viewpoint Reproducibility: Critical to understanding
how models respond to changing conditions is the ability to
evaluate them under scenarios where only one variable is al-
tered. However, any effort to do so in the real-world would
be uncontrolled, due to it’s dynamic (constantly changing)
nature. In contrast, simulated data allows us to do so by
providing control over image generation conditions. Un-
like certain existing aerial datasets that do not support this
feature (see Table. 1), we do so in SKYSCENES by addi-
tionally storing comprehensive metadata for each viewpoint
(and image), including details about camera world coordi-
nates, orientation and all movable / immovable actors and

3Note that CARLA [7] provides 14 such conditions but we use only 5
such conditions in this preliminary version of SKYSCENES.
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Figure 3. SKYSCENES Ground View → (Oblique) Aerial View. Upon
initializing a CARLA [7] scene (for a Town and Variation), we re-position
the camera associated with the actor to obtain oblique aerial views from
ground views.

objects in the scene. We couple this with rigorous consis-
tency checks for image generation that verify the number of
actors, their location, sensor height, pitch, etc. This metic-
ulous approach enables us to reproduce the same viewpoint
under multiple conditions effortlessly.
7 . Adequate Representation of Tail Classes: Unlike
ground-view datasets, pixel distribution of classes in aerial
images is substantially more long-tailed (see Fig. 2; classes
with smaller object size, humans), making visual recogni-
tion tasks harder. This problem is further exacerbated by
differing class distributions across synthetic and real data
(see Fig. 5) – especially severe for instances of human
class. To counter this, we consider structured spawning of
humans to ensure adequate representation.

3.2. SKYSCENES Image Generation

We generate SKYSCENES images from CARLA [7] by tak-
ing the previously mentioned considerations into account.
Curating images from CARLA [7] broadly consists of two
key steps: (1) positioning the agent camera in an aerial
perspective and (2) procedurally guiding the agent within
the scene to capture images. We accomplish the first by
mimicking a UAV perspective in CARLA [7] by positioning
the ego vehicle (with RGB, semantic and depth sensors)
based on specified (high) altitude (h) and pitch (θ) values
to generate aerial views (see Fig. 3).4 Once positioned, the
agent is translated by fixed amounts to traverse the scene
and capture images from various viewpoints (detailed in
Algo. 1 in the appendix). Initially, we generate 70 data-
points for each of the 8 town variations under ClearNoon
conditions using the baseline h = 35, θ = 45◦ setting. Sub-
sequently, following the traversal algorithm (see Algo. 1
in the appendix), we re-generate these datapoints across 5
weather conditions and 12 height/pitch variations, resulting
in 70× 8× 5× 12 = 33, 600 images.

Checks and Balances. Additionally, we ensure the
following checks and balances while curating SKYSCENES
images.

4This also requires setting other scene – weather, daytime, etc. –
and camera – notably the FoV = 110◦ (field of view) and {H,W} =
{2160, 1440} (image resolution) – parameters.
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Figure 4. SKYSCENES HumanSpawn() Effect. Incorporating Hu-
manSpawn() in the image generation pipeline for SKYSCENES increases
the proportion of humans in snapshots ([Top]→[Bottom]).

Layout RS (%) HS (%)

1 Town01 0.08 0.14
2 Town02 0.18 0.17
3 Town03 0.07 0.21
4 Town04 0.14 0.31
5 Town05 0.08 0.43
6 Town06 0.07 0.36
7 Town07 0.12 0.26
8 Town10HD 0.18 0.35
9 All 0.12 0.28
10 UAVid [19] 0.13 0.13

Table 2. Increase in
the human representation.
HumanSpawn (HS) improves
the representation of humans
in SKYSCENES. RS = Ran-
dom Spawn.

mIoU(↑)
Eval Data HS human All

1 S 43.03 80.87
2 S ✓ 61.79 84.07
3 S→U 4.71 45.11
4 S→U ✓ 10.21 47.09

Table 3. Improved human recog-
nition. Training on HumanSpawn
(HS) SKYSCENES images improves
the model’s ability to recognize
humans (improved mIoU). S =
SKYSCENES, U = UAVid [19].

▷ Avoiding Overly Correlated Frames for Viewpoints.
CARLA [7] uses a traffic manager with a PID controller

to control the egocentric vehicle based on current pose,
speed, and a list of waypoints at every pre-defined time step.
Curating images at every time step (or tick) results in highly
correlated frames with little change in object position. Since
overly correlated frames are not very useful when training
models for static scene understanding, we move the camera
by a fixed distance multiple times before saving a frame.
This also helps with moving dynamic actors by a consider-
able amount in the scene. Additionally, pedestrian objects
are regenerated before saving an image, which adds ran-
domness to the spawning and placement of pedestrians and
further reduces correlation between frames.
▷ Adequate Representation of humans. Real-world
scenes often exhibit a long-tailed distribution in pixel pro-
portions, particularly in aerial images where variations in
object sizes and camera positions contribute to signifi-
cant under-representation of the tail classes (in Fig. 2, for
the shared set of classes across UAVid [19] (aerial) and
Cityscapes [5] (ground), we can see that the class distribu-
tions are different and aerial images are significantly more
heavy tailed). As a result, naively spawning humans (rarest
class) in CARLA [7] is detrimental for eventual task per-
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Figure 5. Class-distribution Diversity in SKYSCENES. We show how the distribution of densely-annotated pixels varies across different SKYSCENES
conditions. [Left] Class-distribution varies substantially within and across urban and rural map layouts. [Right] Similarly, for same SKYSCENES layouts
(and viewpoints) class distribution varies substantially across different height and pitch values.
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Figure 6. SKYSCENES Per-Class Pixel Counts. We compare the num-
ber of densely annotated pixels per-class for SKYSCENES (ours), Syn-
drone [25] (another synthetic aerial dataset) and UAVid [19] (real aerial
dataset). We can see how compared to both synthetic and real coun-
terparts, SKYSCENES provides increased representation of tail classes
(vehicles, humans).

formance – for the human class, a SKYSCENES trained
DAFormer [11](with HRDA [12] source training; MiT-
B5 [36] backbone) model leads to an in-distribution perfor-
mance of 43.03 mIoU and out-of-distribution (SKYSCENES
→UAVid [19]) performance of 4.71 mIoU. To counter this
under-representation issue, we design an algorithm, Hu-
manSpawn()5, to explicitly spawn more human instances
while curating SKYSCENES images. HumanSpawn() in-
creases human instances by 40 − 200 per snapshot, im-
proving the proportion of densely annotated humans in
SKYSCENES by approximately 10 times (see Table. 2 &
Fig. 4). This improvement in human representation is also
evident in eventual task performance, with in-distribution
and out-of-distribution mIoUs for humans increasing from
43.03 to 61.79 (+18.76) and 4.71 to 10.21 (+5.50) respec-
tively (see Table. 3.)

3.3. SKYSCENES: Dataset Details

Annotations. We provide semantic, instance and depth an-
notations for every image in SKYSCENES. Semantic an-
notations in SKYSCENES by default are across 28 classes.
These are building, fence, pedestrian, pole, roadline (mark-
ings on road), road, sidewalk, vegetation, cars, wall, traffic
sign, sky, bridge, railtrack, guardrail, traffic light, water, ter-
rain, rider, bicycle, motorcycle, bus, truck and others (see

5More details in Sec. B.1 of the appendix.

Fig. 1 for an example).6

Training, Validation and Test Splits. SKYSCENES has 70
images per town (across 8 towns) for each of the 5 weather
and daytime conditions, and 12 height & pitch combina-
tions, resulting in a total of 33, 600 images. We use 80%
(26, 880 images) of the dataset for training models, with
10% (3, 360 images) each for validation and testing. While
creating train, val and test splits, we collect equal number
of samples from each town by dividing each town-specific
traversal sequence into 3 segments: the initial 80% for train-
ing, the next 10% for testing, and the final 10% of the seg-
ment for validation. Moreover, within each split, we ensure
that every viewpoint is accompanied by its 60 different vari-
ations across weather, daytime, height, and pitch settings.
This safeguards against any potential cross-contamination
across different splits while ensuring fair representation and
equal distributions of all variations.
Class Distribution(s). In Fig. 6, we compare the number
of densely annotated pixels in SKYSCENES with those in
Syndrone [25] (another synthetic dataset) and UAVid [19]
(a real aerial dataset). Compared to both the real and
prior synthetic counterparts, we show that SKYSCENES
is specifically curated to ensure adequate tail class repre-
sentation (more human and vehicle pixels) to facilitate
model learning. Additionally, in Fig. 5, we highlight how
the distribution of classes changes across variations within
SKYSCENES– rural and urban map layouts and height and
pitch specifications. SKYSCENES exhibits substantial di-
versity in class-distributions across such conditions, allow-
ing these individual conditions to serve as diagnostic splits
to assess model sensitivity (see Sec. 4.2)

4. Experiments

We conduct semantic segmentation experiments with
SKYSCENES to assess a few different factors. First, we
check if training on SKYSCENES is beneficial for real-world

6We provide detailed definitions in Sec. B.2 of the appendix.
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Source (Target) Real-World mIoU (↑)
UAVid AEROSCAPES ICG DRONE

DeepLabv2 (R-101) [3]

1 SYNDRONE 39.86 24.50 8.20
2 SKYSCENES 41.82 26.94 15.14
3 Train-on-Target 68.53 68.59 73.12

DAFormer (MiT-B5) [12]

4 SYNDRONE 42.31 30.53 15.92
5 SKYSCENES 47.09 40.72 25.91
6 Train-on-Target 72.47 77.80 76.44

Table 4. Models trained on SKYSCENES generalize well to the
real-world. We train semantic segmentation models (DeepLabv2 [3],
DAFormer [11]) on SKYSCENES, SYNDRONE and real datasets [25] and
show how training models on SKYSCENES provides better out-of-the-box
generalization to multiple real-world datasets. Rows in gray represent an
upper-bound oracle performance.

transfer. Second, we check if SKYSCENES can augment
real-world training data in low and full shot regimes. Third,
we check if variations in SKYSCENES can be used to as-
sess sensitivity of trained models to changing conditions.
Finally, we check if using additional modality information
(depth) can help improve aerial scene understanding.
Synthetic and Real Datasets. We compare real-world
generalization performance of training on SKYSCENES
with SYNDRONE [25], a recently proposed synthetic aerial
dataset also curated from CARLA [7]. We assess per-
formance on 3 real-world aerial datasets – UAVid [19],
AEROSCAPES [22], ICG DRONE [14]. Since different
datasets have different class vocabularies and definitions,
for our experiments, we adapt the class vocabulary of the
synthetic source dataset to that of the target real-world
datasets.7 Additionally, since different real aerial datasets
have been captured from different heights and pitch angles,
we train models on (h, θ) subsets of synthetic datasets that
are aligned with corresponding real data (h, θ) conditions.
We provide additional details for the real aligned synthetic
data selection and model evaluation in Sec. D.1 of the ap-
pendix.
Models. We use both CNN – DeepLabv2 [3] (ResNet-
101 [10]) – and transformer – DAFormer [11] (with
HRDA [12] source training; MiT-B5 [36] backbone) –
based semantic segmentation architectures for our experi-
ments. We provide implementation details surrounding our
experiments in Sec. C of the appendix.

4.1. SKYSCENES→ Real Transfer

▷ SKYSCENES trained models generalize well to real-
settings. In Table. 4, we show how models trained on
SKYSCENES exhibit strong out-of-the box generalization

7We detail class merging and assignment schemes used for these exper-
iments in Table. 8, Table. 9 and Table. 10 in the appendix.

Source (Target) Real-World mIoU (↑)
UAVid AEROSCAPES ICG DRONE

vehicle human vehicle person vehicle person

1 SYNDRONE 42.52 8.27 49.77 0.77 0.24 0.38
2 SKYSCENES 63.64 10.21 80.99 3.09 39.71 45.89
3 Train-on-Target 80.70 41.25 87.58 57.99 94.08 83.64

Table 5. SKYSCENES training exhibits strong real-world gen-
eralization for tail classes. We show how DAFormer [11] models
trained on SKYSCENES exhibit improved real-world generalization com-
pared to those trained on SYNDRONE for under-represented tail classes
(vehicles and humans). SKYSCENES training facilitates better recog-
nition of tail class instances. Rows in gray are meant to represent oracle
numbers, indicating an upper bound on attainable performance.
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Figure 7. SKYSCENES can augment “real” training data. We
show how SKYSCENES can additionally augment real (UAVid [19])
training data. We compare DeepLabv2 [3] models trained using only
5%, 10%, 25%, 50%, 100% of labeled UAVid [19] images with counter-
parts that were either (1) pretrained on SKYSCENES, and finetuned on
UAVid [19] (FT) or (2) trained jointly on SKYSCENES and UAVid [19]
(JT). We find that [Left] additionally augmenting training data with
SKYSCENES and help improve real-world generalization in low-shot
regimes, [Middle, Right] especially for under-represented classes.

performance on multiple real world datasets. We find
that SKYSCENES pretraining exhibits stronger generaliza-
tion compared to SYNDRONE [25] across both CNN and
transformer segmentation backbones. In Table. 5, we show
how generalization improvements are more pronounced for
under-represented tail classes (vehicles and humans)8.

▷ SKYSCENES can augment real training data. In ad-
dition to zero-shot real-world generalization, akin to other
synthetic aerial datasets, we also show how SKYSCENES
is useful as additional training data when labeled real-
world data is available. In Fig. 7, for SKYSCENES
→UAVid [19], we compare models trained only using
5%, 10%, 25%, 50%, 100% of the 200 UAVid [19] train-
ing images with counterparts that were either pretrained us-
ing SKYSCENES data or additionally supplemented with
SKYSCENES data at training time. We find that in low-
shot regimes (when little “real” world data is available),
SKYSCENES data (either explicitly via joint training or im-
plicitly via finetuning) is beneficial in improving recogni-
tion performance. We find this to be especially benefi-
cial for under-represented classes in aerial imagery (such
as humans and vehicles). We discuss more such results
across other real-world datasets in Sec. D.2 of the appendix.

8Model performance comparisons for all the classes are provided in
Table 11, Table. 12 and Table. 13 in the appendix
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Train Test mIoU (↑)
Clear Cloudy Rainy

1 Clear 73.91 73.59 69.95
2 Cloudy 69.60 74.02 69.14
3 Rainy 69.00 73.36 72.62

(a) Weather Variations

Train Test mIoU (↑)
Noon Sunset Night

1 Noon 73.91 71.16 35.60
2 Sunset 63.16 66.53 39.36
3 Night 52.00 57.35 70.36

(b) Daytime Variations

Train Test mIoU (↑)
Rural Urban

1 Rural 58.00 35.90
2 Urban 38.99 73.16

(c) Map Variations

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 48.50 50.71 45.22 42.21
2 h = 35m 50.49 55.74 57.11 52.19
3 h = 60m 45.33 49.79 50.37 44.62

(d) Height & Pitch Variations

Table 6. Model Sensitivity to Changing Conditions. We show how changing conditions (weather, daytime, map, viewpoint) in SKYSCENES can serve
as diagnostic test splits to assess the sensitivity of trained DAFormer [11] semantic segmentation models. In (a) and (b), we evaluate models trained under
different weather and daytime conditions across the same conditions. In (c), we evaluate models trained on rural and urban scenes across the same layouts.
In (d), we evaluate a model trained on moderate height, pitch settings (h = 35, θ = 45◦) across different h, θ variations. We observe that, as the altitude
increases, oblique viewpoints are best suited for recognition. Best numbers across each row condition is highlighted in blue.

Sensors SKYSCENES Test mIoU (↑)
clutter building road tree low-veg. vehicle human Avg

1 RGB 87.80 94.54 94.07 88.03 69.37 82.89 43.35 80.01
2 RGB+D 90.64 95.97 94.87 89.41 74.36 86.87 50.47 83.22

Table 7. Multi-modal Segmentation in SKYSCENES. We show how
SKYSCENES enables developing multi-modal segmentation models. We
evaluate M3L multimodal segmentation architectures (with MiT-B5 back-
bones) with RGB and RGB+D observations and show additional sensors
help substantially improve aerial scene understanding. We consider the
broad set of UAVid class palette for this experiment.

4.2. SKYSCENES as a Diagnostic Framework

As noted earlier, the images we curate in SKYSCENES con-
tain several variations – ranging from 5 different weather
and daytime conditions, rural and urban map layouts, and
12 different height and pitch combinations (see Fig. 5 for
variations in class distributions). We curate images under
such diverse conditions in a controlled manner – ensuring
the same spatial coordinates for (h, θ) variations, same spa-
tial coordinates and (h, θ) settings across different weather
and daytime conditions, same number of images across lay-
outs. This allows us to assess the sensitivity of trained mod-
els to one factor of variation (h, θ, daytime, weather, map
layout) by changing that specific aspect. We summarize
some takeaways from such experiments in Table. 6.

In Table. 6 (a), we show how models trained in a certain
weather condition are best at generalizing to the same con-
dition at test-time. We make similar observations for day-
time variations in Table. 6 (b). In Table. 6 (c), we show how
models trained in rural conditions fail to perform well in ur-
ban test-time conditions and vice-versa. In Table. 6 (d), we
evaluate a model trained under moderate (h = 35, θ = 45◦)
conditions under different (h, θ) variations. We find that as
altitudes increase, trained models are better at recognizing
objects from oblique (θ ∈ (0◦, 90◦)) viewpoints. We pro-
vide exhaustive quantitative comparisons in Sec. D.3 of the
appendix.

4.3. SKYSCENES Enables Multi-modal Recognition

Sensors on UAVs in deployable settings are not limited to
RGB cameras. It is common to have UAVs deployed in the
real-world with additional modality sensors, such as depth.
Additional sensor modalities can also potentially help im-
prove aerial scene understanding. In Table. 7, we check
if assisting RGB with Depth observations for SKYSCENES
viewpoints can help improve aerial semantic segmentation
using M3L [20], a model capable of multimodal segmenta-
tion. Similar to our DAFormer [11] experiments, we con-
sider a SegFormer equivalent version of M3L [20] (with an
MiT-B5 [36] backbone). We test RGB and RGB+D mod-
els trained under (h = 35, θ = 45◦) (moderate viewpoint)
conditions on SKYSCENES and find that incorporating addi-
tional Depth observations can substantially improve recog-
nition performance. This demonstrates that annotated im-
ages in SKYSCENES can be used to train multimodal scene-
recognition models.

5. Conclusion
We introduce SKYSCENES, a large-scale densely-annotated
dataset of synthetic aerial scenes curated from unmanned
aerial vehicle (UAV) perspectives. We collect SKYSCENES
images from CARLA by first aerially situating an agent
(to get an aerial perspective) and then procedurally tele-
operating the agent through the scene to capture aerial
frames with corresponding semantic, instance and depth
annotations. Our careful curation process ensures that
SKYSCENES images are carefully curated across diverse
weather, daytime, map, height and pitch conditions, with
accompanying metadata that enables reproducing the same
viewpoint (spatial coordinates and perspective) under dif-
fering conditions.
Through our experiments, we demonstrate how (1)
SKYSCENES trained models can generalize to real-world
settings, (2) SKYSCENES images can augment labeled real-
world data in low-shot regimes, (3) SKYSCENES can serve
as a diagnostic framework to assess model sensitivity to
changing conditions and (4) additional sensors, such as

8



Depth, in SKYSCENES can facilitate development of multi-
modal aerial scene understanding models.
Lastly, we plan on updating SKYSCENES with evolving
considerations for real-world aerial scene-understanding –
improved realism, additional anticipated edge cases – as
more and more features are supported in the underlying sim-
ulator. We intend to release both the dataset and associated
generation code for SKYSCENES publicly, and hope that
our experimental findings encourage further research using
SKYSCENES for aerial scenes.
Acknowledgements. We would like to thank Sean Fo-
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A. Appendix
This appendix is organized as follows. In Sec. B, we pro-
vide more details on different aspects of dataset – includ-
ing the procedural image curation algorithm, algorithm to
ensure appropriate representation of human instances and
brief descriptions of all the classes in SKYSCENES. Then,
we describe experimental details in Sec. C – class-merging
schemes used for our SKYSCENES →Real transfer exper-
iments, train / val / test splits, experimental details for
SKYSCENES diagnostic setup to probe model vulnerabili-
ties. Sec. D provides more quantitative and qualitative ex-
perimental results.

B. SKYSCENES Details
B.1. Image Generation Algorithms

We curate SKYSCENES using CARLA [7] 0.9.14 simulator.
The generation process broadly consists of two key steps:
(1) positioning the agent camera in an aerial perspective and
(2) procedurally guiding the agent within the scene to cap-
ture images. We accomplish the first by mimicking a UAV
perspective in CARLA [7] by positioning the ego vehicle
(with RGB, semantic, depth and instance segmentation sen-
sors) based on specified altitude (h) and pitch (θ) values to
generate aerial views. This also requires setting other scene
information like – town, weather, and daytime. The camera
FoV = 110◦ (field of view) and {H,W} = {2160, 1440}
(image resolution) are also set.
To maintain the adequate representation of tail classes, es-
pecially for humanswe incorporate structured spawning of
humans using Algo. 2. CARLA [7] has a limit on the num-
ber of actors that can be spawned in a scene, which depends
on factors such as the type and size of the town, number
of lanes to spawn vehicles, and amount of sidewalk area.
To overcome this limitation, we decided to bring the actors
into the field of view of the camera instead of having them
spread out in the scene. We developed an algorithm to find
all the points to spawn pedestrians in the field of view using
the camera location and spawn them like vehicles on roads.
After taking a snapshot, we destroy the spawned pedestrians
and repeat the process. Manual spawning not only increases
the number of human instances and their proportion but
also aligns their placement with real-world settings. The
steps involved in manual spawning instances of humans
are summarized below:
1 Specify maximum number of humans to be spawned
Nmax

2 Get camera position (x, y, z), set a pre-defined distance
d to check for spawnable locations and execute the sub-
routine in Algo. 2. This will place the actors in the field
of view till a junction or the next driving lane.

3 If at a junction, obtain the left and the right waypoints
for every retrieved location at a distance of d to get the

Algorithm 1 SKYSCENES ImgGen (z, θ, FoV, H , W )

1: # Initialize key CARLA parameters
2: Input: z (height), θ (pitch), FoV, H , W
3: # Initialize auxiliary CARLA parameters
4: Initialize: MB←Off ▷ Turn off motion blur
5: Initialize: Post-process RGB←True ▷ Turn on RGB

post processing
6: Dataset: D = {·}
7: # Town and variation vocabulary
8: T = {Ti}Mi=1 (Towns), V = {Vi}Ni=1 (Vars)
9: for Ti ∈ T do

10: for Vj ∈ V do
11: # Initialize CARLA scene
12: E ←CARLA init(Ti, Vj)
13: # Position Camera
14: Init Sensor (E, z, θ, FoV, H , W , MB)
15: # Spawn pedestrians, vehicles, etc.
16: Spawn Actors (E)
17: # Initialize Movement Steps
18: ∆step ← ∆, Nsteps ← N
19: for k ∈ Nsteps do
20: # Sample Frame
21: I ←Sample Frame (E)
22: # Get pixel-level annotations
23: Ianno ←Get Anno (E,I)
24: # Get metadata
25: Imeta ←Get Meta (E,I)
26: # Append to dataset
27: D ← D ∪ {(I, Ianno, Imeta)}
28: # Move camera by a fixed distance
29: Move Camera (E, ∆step)
30: Return: D (SKYSCENES data) ▷ Gathered Images

list of waypoints.
4 Using the waypoint from the end of the current lane,

generate waypoints for the new main, left and right lanes
by repeating the previous steps.

5 Repeat the above steps till Nhumans ≤ Nmax

Once positioned, the agent is translated by fixed amounts
to traverse the scene and capture images from various view-
points. Initially, we generate 70 datapoints for each of the 8
town variations under ClearNoon conditions using the base-
line h = 35, θ = 45◦ setting. Subsequently, following
the traversal algorithm (Algo. 1), we re-generate these data-
points across 5 weather conditions and 12 height/pitch vari-
ations, resulting in 70× 8× 5× 12 = 33, 600 images.

B.2. Class Descriptions

We provide semantic, instance, and depth annotations for
every image in SKYSCENES. SKYSCENES provides dense
semantic annotations for 28 classes. These are:
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Algorithm 2 HumanSpawn (x, y, d, pgen)

1: # Initialize parameters
2: Input: x, y (camera position), d (distance between

spawned instances), pgen (spawn probability)
3: # Spawn locations
4: Dspawn = {·}
5: # Get candidate positions in front of the camera
6: {(x, y)}front ←get loc(x, y, d) ▷ Current Lane
7: # Get candidate positions left of camera
8: {(x, y)}left ←get loc(x−∆left, y, d) ▷ Left Lane
9: # Get candidate positions right of camera

10: {(x, y)}right ←get loc(x+∆right, y, d) ▷ Right Lane
11: Dspawn ← {(x, y)}front ∪ {(x, y)}left ∪ {(x, y)}right
12: for (x, y) ∈ Dspawn do
13: if random()≤ pgen then
14: # Spawn human
15: spawn human()

• unlabeled: elements/objects in the scene that have not
been categorized in CARLA

• other: uncategorized elements
• building: includes houses, skyscrapers, and the ele-

ments attached to them.
• fence: wood or wire assemblies that enclose an area of

ground
• pedestrian: humans that walk
• pole: vertically oriented pole and its horizontal compo-

nents if any
• roadline: markings on road.
• road: lanes, streets, paved areas on which cars drive
• sidewalk: parts of ground designated for pedestrians

or cyclists
• vegetation: trees, hedges, all kinds of vertical vege-

tation (ground-level vegetation is not included here).
• cars: cars in scene
• wall: individual standing walls, not part of buildings
• traffic sign: signs installed by the state/city

authority, usually for traffic regulation
• sky: open sky, including clouds and sun
• ground: any horizontal ground-level structures that

does not match any other category
• bridge: the structure of the bridge
• railtrack: rail tracks that are non-drivable by cars
• guardrail: guard rails / crash barriers
• traffic light: traffic light boxes without their

poles.
• static: elements in the scene and props that are

immovable.
• dynamic: elements whose position is susceptible to

change over time.
• water: horizontal water surfaces
• terrain: grass, ground-level vegetation, soil or sand

• rider: humans that ride/drive any kind of vehicle or
mobility system

• bicycle: bicycles in scenes
• motorcycle: motorcycles in scene
• bus: buses in scenes
• truck: trucks in scenes

B.3. Depth & Instance Segmentation

We also provide depth and instance segmentation annota-
tions along with semantic segmentation annotations. Both
the depth and instance segmentation sensors are mounted
alongside the RGB camera and semantic segmentation sen-
sors. Depth is stored in the LogarithmicDepth format
which provides better results for closer objects. We also
provide depth-aided semantic segmentation results (training
details in Sec. C.3).

C. Experiment Details
C.1. Class Merging Details

▷ Synthetic→Real. As noted in Sec of the main pa-
per, since different real-world datasets have different class
vocabularies and definitions, for our Synthetic→Real se-
mantic segmentation experiments, we adapt the class-
vocabulary of the synthetic source dataset (SKYSCENES,
SYNDRONE) to that of the target real dataset (UAVid,
AEROSCAPES, ICG DRONE). This is done using a class-
merging scheme based on the class-vocabularies and af-
ter visually inspecting dataset annotations. We provide
the class-merging schemes used for both SKYSCENES
and SYNDRONE [25] (synthetic) across real counterparts
UAVid [19] (in Table. 8), AEROSCAPES [22] (in Table. 9)
and ICG DRONE [14] (in Table. 10).
▷ SKYSCENES Diagnostic Experiments. To assess
the sensitivity of trained models to different factors –
weather, time of day, height, pitch, etc.– we train
models on different SKYSCENES variations and evalu-
ate them on held-out-variations. For these experiments,
we recude the SKYSCENES vocabulary to a reasonable
subset of 20 classes (consistent with the widely used
Cityscapes [5] palette) – road, sidewalk, building,
wall, fence, pole, traffic light, traffic
sign, vegetation, water, sky, pedestrian,
rider, cars, truck, bus, roadline, motorcycle,
bicycle and an ignore class.

C.2. Training, Validation and Test Splits

C.2.1 Synthetic→ Real Experiments

SKYSCENES. For each (h, θ) combination, SKYSCENES
has a total of 2800 datapoints (frames) which are distributed
evenly across each of the 8 town layouts and 5 weather and
daytime conditions. We use 80% (2240 images) of these
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Syn → UAVid UAVid SKYSCENES SYNDRONE

1 clutter

clutter unlabelled unlabelled
other other

traffic sign traffic sign
rail track rail track
guard rail guard rail

traffic light traffic light
static static

dynamic dynamic
ground ground

sidewalk sidewalk
fence fence
sky sky

bridge bridge
water water
pole pole

2 building building building building
wall wall

3 road road road road
roadline roadline

4 vegetation vegetation vegetation vegetation

5 low vegetation terrain terrain terrain

6 person person pedestrian pedestrian
rider rider

motorcycle motorcycle
bicycle bicycle

7 vehicle

car car car
truck truck
bus bus

train

Table 8. Class merging scheme for evaluating Syn → UAVid
experiments The first column is the final set of merged classes
we use for Syn →UAVid evaluation, the second column is the
original UAVid [14] classes, the third column is the original
SKYSCENES classes and the last column is the original SYN-
DRONE [25] classes. Each row indicates all the classes from
UAVid, SKYSCENES, and SYNDRONE that were merged and cor-
respond to the final Syn→UAVid class in the first column

datapoints for training models, and remaining 10% (280 im-
ages) each for validation and testing.
SYNDRONE. SYNDRONE has 3000 images per town
(across 8 CARLA towns) for each of the 3 (h, θ) combina-
tions, resulting in a total of 3000× 8 = 24, 000 images per
(h, θ) combination. We use 20, 000 of these datapoints for
training models, with 4000 kept aside for testing. The dat-
apoints selected for training and testing are kept consistent
with the one reported in SYNDRONE [25].

C.2.2 SKYSCENES Diagnostic Experiments

Weather & Daytime Variations. For each weather vari-
ation we sample evenly across the 8 towns and 9 (h, θ)
combinations (excluding θ = 0◦), resulting in a total of
70 × 9 × 8 = 5040 images. We use 80% (4032 images) of
these for training models, and remaining 10% (504 images)

Syn → AEROSCAPES AEROSCAPES SKYSCENES SYNDRONE

1 background

background unlabelled unlabelled
drone other other
boat traffic sign traffic sign

animal rail track rail track
obstacle guard rail guard rail

traffic light traffic light
static static

dynamic dynamic
ground ground

sidewalk sidewalk
terrain terrain
water water
pole pole

2 bicycle bike bicycle bicycle
motorcycle motorcycle

3 person person pedestrian pedestrian
rider rider

4 vehicle

car car car
truck truck
bus bus

train

5 vegetation vegetation vegetation vegetation

6 building

construction building building
wall wall
fence fence
bridge bridge

7 road road road road
roadline roadline

8 sky sky sky sky

Table 9. Class merging scheme for evaluating Syn →
AEROSCAPES experiments The first column is the final set of
merged classes we use for Syn →AEROSCAPES evaluation, the
second column is the original AEROSCAPES [22] classes, the third
column is the original SKYSCENES classes and the last column
is the original SYNDRONE [25] classes. Each row indicates all
the classes from AEROSCAPES, SKYSCENES, and SYNDRONE

that were merged and correspond to the final Syn→AEROSCAPES

class in the first column

each for validation and testing. We evaluate the model on
the same weather variation it was trained on and select the
model with the best mIoU score for further evaluations on
other weather variations.
Town Variations. For each variation in town we sam-
ple evenly across 5 weather and daytime conditions and 9
height and pitch variations(excluding pitch=0◦ variations),
resulting in a total of 70 × 5 × 9 = 3150 images per town
variation. Out of these, 80% (2520 images) is allocated for
training models, with 10% (315 images) each for valida-
tion and testing. We evaluate the model on the same town
variation it was trained on and select the model with the best
mIoU score for further evaluations on other town variations.
Height & Pitch Variations. For each (h, θ) variation, we
evenly sample across 8 towns and 5 weather and daytime
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Syn → ICG DRONE ICG DRONE SKYSCENES SYNDRONE

1 other

obstacle unlabelled unlabelled
dog other other

conflicting traffic sign traffic sign
ar-marker sky sky
unlabelled bridge bridge

gurad rail guard rail
traffic light traffic light

static static
dynamic dynamic

2 fence fence fence fence

3 pole fence pole pole pole

4 vegetation tree vegetation vegetation
bald-tree

5 building

wall wall wall
roof building building
door

window

6 water water water water
pool

7 bicycle bicycle bicycle bicycle
motorcycle motorcycle

8 vehicle

car car car
truck truck
bus bus

train

9 person person pedestrian pedestrian
rider rider

10 paved area

paved area ground ground
sidewalk sidewalk

road road
roadline roadline
rail track rail track

11 terrain

rocks terrain terrain
gravel

dirt
vegetation

grass

Table 10. Class merging scheme for evaluating Syn → ICG
DRONE experiments The first column is the final set of merged
classes we use for Syn →ICG DRONE evaluation, the second col-
umn is the original ICG DRONE [14] classes, the third column is
the original SKYSCENES classes and the last column is the original
SYNDRONE [25] classes. Each row indicates all the classes from
ICG DRONE, SKYSCENES, and SYNDRONE that were merged
and correspond to the final Syn→ICG DRONE class in the first
column

conditions, resulting in a total of 70 × 8 × 5 = 2800 im-
ages per height and pitch variation. Out of these, 80% (2240
images) are allocated for training models, and 10% (280 im-
ages) each for validation and testing.We evaluate the model
on the same height & pitch setting it was trained on and
select the model with the best mIoU score for further eval-

uations on other height & pitch settings.

C.3. Training Details

Semantic Segmentation. For our semantic segmenta-
tion experiments we use both CNN – DeepLabv2 [3]
(ResNet-101 [10] backbone) – and vision transformer –
DAFormer [11] (with HRDA [12] source training; MiT-
B5 [36] backbone) – based semantic segmentation archi-
tectures. Note that we utilize only the DAFormer architec-
ture to perform source-only training for our experiments.
Following [13], we enable rare class sampling [11] and
use Imagenet feature-distance for our thing classes during
training. All models are trained using the AdamW [18] op-
timizer coupled with a polynomial learning rate scheduler
with an initial learning rate of 6 × 10−5. Each model is
trained for 40k iterations with a batch size of 4. For our
fine-tuning experiments, we use an initial learning rate of
6× 10−6.
Depth-Aided Semantic Segmentation. For our depth-
aided semantic segmentation experiments in Sec. 4.3 of the
main paper, similar to DAFormer [11], we employ a Seg-
Former [36] equivalent version of M3L [20] (multimodal
segmentation network) with an MiT-B5 [36] backbone. We
initialize the network with ImageNet-1k pre-trained check-
points. For M3L Linear Fusion, we use α = 0.8. We
use AdamW [15] optimizer and train on a batch size of 4
for 50 epochs. We use a learning rate of 10−4 for the en-
coder and 3 × 10−4 for the decoder with a momentum of
0.9 and weight decay of 10−4. We set the polynomial de-
cay of power 0.9. We train both RGB and RGB+D models
with complete supervision for (h = 35, θ = 45◦) (moderate
viewpoint) conditions on SKYSCENES.

C.4. Evaluation Details

Due to memory constraints, in addition to heavily parame-
terized models, our GPUs were unable to fit images larger
than 1280 × 720. Hence for high-resolution datasets like
UAVid, we use the trained model to make separate predic-
tions on 4 equally sized slightly-overlapping crops (overlap
of 20 pixels) of the of the real image and stitch crop pre-
dictions to obtain the overall image prediction. Similarly,
for ICG DRONE, we obtain overall image prediction using
such crop predictions.

D. Results
D.1. Synthetic→Real Aligned Data Selection

As stated in the main paper, for our Synthetic→Real ex-
periments, we train models on (h, θ) subsets of synthetic
datasets that are aligned with corresponding real data (h, θ)
conditions. In case of UAVid and AEROSCAPES we find
that (h = 35m, θ = 45◦) viewpoints in SKYSCENES
and (h = 20m, θ = 30◦) viewpoints in SYNDRONE are

14



h(m) θ(◦) Synthetic→ UAVid mIoU (↑)
Clutter Building Road Tree Low Vegetation Human Vehicle Avg

SKYSCENES

1 15 0 30.23 70.24 43.91 52.20 6.24 10.33 43.45 36.66
2 15 45 23.36 61.88 43.10 38.18 11.79 0.32 3.76 26.05
3 15 60 22.15 57.85 39.31 38.43 5.35 0.27 3.72 23.35
4 15 90 27.01 68.40 41.92 53.79 17.95 17.26 42.80 38.45

5 35 0 31.66 72.37 38.65 45.73 12.97 0.45 23.63 32.21
6 35 45 36.44 81.3 52.09 60.00 25.96 10.21 63.64 47.09
7 35 60 28.17 68.31 44.96 44.84 15.32 0.05 8.81 30.06
8 35 90 28.88 76.49 48.11 57.88 13.61 7.98 49.32 40.07

9 60 0 24.83 66.37 26.18 39.58 11.43 0.01 4.76 24.74
10 60 45 27.32 66.02 38.29 41.45 11.72 0.0 5.25 27.15
11 60 60 23.98 62.62 32.72 41.00 17.55 0.00 6.34 26.32
12 60 90 28.84 75.03 40.72 54.27 13.02 1.16 49.48 37.50

SYNDRONE

13 20 30 36.20 75.74 48.71 55.95 28.75 8.27 42.52 42.31
14 50 60 31.13 69.93 48.87 54.49 27.71 1.32 36.06 38.50
15 80 90 28.89 65.66 42.05 51.51 32.16 0.13 28.39 35.54

Table 11. Models trained on UAVid aligned (h,θ) display better gen-
eralization performance . We have trained both SKYSCENES and SYN-
DRONE on every subset of (h,θ) provided by the respective datasets

h(m) θ(◦) Synthetic→ AEROSCAPES mIoU (↑)
Background Bicycle Person Vehicle Vegetation Building Road Sky Avg

SKYSCENES

1 15 0 32.39 0.00 3.45 55.42 56.08 30.11 15.4 69.75 32.81
2 15 45 25.26 0.0 4.12 5.72 31.9 11.56 26.43 7.23 14.03
3 15 60 27.16 0.00 1.69 11.81 32.27 22.48 31.22 0.21 15.86
4 15 90 28.53 1.32 30.35 77.22 53.09 12.09 11.43 0.00 26.75

5 35 0 32.45 0.00 0.00 17.65 51.00 42.03 7.14 75.03 28.16
6 35 45 32.07 0.8 3.09 80.99 51.34 45.54 23.64 88.29 40.72
7 35 60 29.72 0.00 0.00 30.00 45.54 24.01 23.26 0.00 19.07
8 35 90 30.62 1.9 2.62 72.77 55.56 26.85 17.34 1.94 26.2

9 60 0 29.99 0.0 0.0 1.05 34.68 42.11 10.53 49.63 21.00
10 60 45 28.05 0.0 0.0 7.14 40.60 22.38 17.84 5.16 15.15
11 60 60 26.71 0.0 0.0 0.53 37.93 19.95 18.63 0.80 13.07
12 60 90 31.08 0.00 0.11 30.83 58.10 31.61 17.76 0.06 21.19

SYNDRONE

13 20 30 32.32 0.92 0.77 49.77 54.42 35.71 6.89 63.45 30.53
14 50 60 32.29 0.99 0.05 29.41 56.47 39.59 22.15 5.36 23.29
15 80 90 30.40 0.09 0.01 27.09 51.04 39.20 27.32 0.17 21.92

Table 12. Models trained on AEROSCAPES aligned (h,θ) display bet-
ter generalization performance . We have trained both SKYSCENES and
SYNDRONE on every subset of (h,θ) provided by the respective datasets

best aligned with UAVid conditions (see Table. 11 and
Table. 12) and provide best transfer performance. Simi-
larly, for ICG DRONE we observe that (h = 15m, θ =
90◦) SKYSCENES conditions are best aligned with the low-
altitude, nadir perspective imagery in ICG DRONE and
lead to best transfer performance (see Table. 13). How-
ever, for SYNDRONE, we find that the model trained on
(h = 80m, θ = 90◦) has best transfer performance, in-
dicating that model performance is more sensitive to pitch
alignment than height alignment.

D.2. SKYSCENES + Real Data Experiments

In addition to zero-shot transfer to real data, we
also show how SKYSCENES is useful as additional
training data when labeled real-world data is avail-
able. In Fig. 8 and Fig. 9, we compare the perfor-
mance of DeepLabv2 [3] for SKYSCENES →UAVid [19]
and for SKYSCENES →AEROSCAPES [22] trained only
using 5%, 10%, 25%, 50%, 100% of UAVid [19] and
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Increasing amount of labeled “real” images [DeepLabv2 UAVid]

Figure 8. [DeepLabv2 UAVid] SKYSCENES can augment “real” train-
ing data. We show how SKYSCENES can additionally augment real
(UAVid [19]) training data. We compare DeepLabv2 [3] models trained
using only 5%, 10%, 25%, 50%, 100% of labeled UAVid [19] images
with counterparts that were either (1) pretrained on SKYSCENES, and
finetuned on UAVid [19] (FT) or (2) trained jointly on SKYSCENES and
UAVid [19] (JT). We find that [Left] additionally augmenting training data
with SKYSCENES and help improve real-world generalization in low-shot
regimes, [Middle, Right] especially for under-represented classes.
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Figure 9. [DeepLabv2 Aeroscapes] SKYSCENES can augment
“real” training data. We show how SKYSCENES can addition-
ally augment real (Aeroscapes [22]) training data. We compare
DeepLabv2 [3] models trained using only 5%, 10%, 25%, 50%, 100% of
labeled Aeroscapes [22] images with counterparts that were either (1) pre-
trained on SKYSCENES, and finetuned on Aeroscapes [22] (FT) or (2)
trained jointly on SKYSCENES and Aeroscapes [22] (JT). We find that
[Left] additionally augmenting training data with SKYSCENES and help
improve real-world generalization in low-shot regimes, [Middle, Right]
especially for under-represented classes.

AEROSCAPES [22] training images respectively with coun-
terparts that were either pretrained using SKYSCENES data
or additionally supplemented with SKYSCENES data at
training time. In Fig. 10 and Fig. 11 we make a simi-
lar comparison with the DAFormer [11] architecture. In
low-shot regimes (when little “real” world data is avail-
able), SKYSCENES data (either explicitly via joint train-
ing or implicitly via finetuning) is beneficial in improv-
ing recognition performance. We find this to be especially
beneficial for under-represented classes in aerial imagery
(such as humans and vehicles). In Table. 14a and Ta-
ble. 14c we present similar fine-grained (per-class) com-
parison of SKYSCENES with SYNDRONE for a DeepLabv2
model when real data is available for training – via Target-
Only, Finetuning or Joint-Training. Tables. 14b and 14d
show similar comparisons using the DAFormer [11] model.

D.3. SKYSCENES Diagnostic Experiments

Similar to Table 6 (d) in the main paper, in Table 15,
we assess broader (h, θ) sensitivity of models by train-
ing DAFormer [11] models across all (total 12) (h, θ)
settings and evaluate them across the same conditions in
SKYSCENES. Table 15 (a) models trained on (h =
15m, θ = 0◦) are representative of one extreme of the range
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h(m) θ(◦) Synthetic→ ICG DRONE mIoU (↑)
other fence pole vegetation building water bicycle vehicle person paved area terrain Avg Avg∗

SKYSCENES

1 15 0 2.85 0.28 0.04 6.60 29.94 0.83 0.06 0.45 0.35 27.46 0.72 6.33 7.33
2 15 45 2.87 0.67 0.21 6.91 32.12 3.25 0.49 5.03 25.22 56.69 8.78 12.93 14.51
3 15 60 3.98 0.00 0.73 5.19 35.85 0.66 0.12 4.95 3.56 57.51 1.21 10.34 12.06
4 15 90 3.74 1.45 2.51 6.67 46.72 8.19 2.21 39.71 45.89 79.84 6.04 22.09 25.91

5 35 0 1.63 0.00 0.06 4.86 28.84 2.77 0.07 0.04 0.30 29.70 6.96 6.84 7.40
6 35 45 4.37 0.39 1.60 4.90 25.33 4.98 0.10 1.35 0.29 68.37 29.51 12.83 11.92
7 35 60 2.06 0.01 0.04 6.15 30.05 9.43 0.02 0.23 0.11 54.99 13.43 10.59 11.23
8 35 90 2.13 0.04 0.64 7.34 28.07 7.26 0.09 0.30 0.11 50.27 11.11 9.76 9.63

9 60 0 2.23 0.00 0.00 8.30 32.07 1.72 0.10 0.03 0.17 11.58 13.30 6.32 6.00
10 60 45 1.07 0.00 0.02 7.71 30.03 4.73 0.17 0.00 0.22 31.62 8.87 7.68 8.28
11 60 60 0.81 0.00 0.02 4.84 26.59 7.21 0.16 0.01 0.16 51.34 8.39 9.05 9.11
12 60 90 1.32 0.00 0.25 7.90 27.64 3.21 0.04 0.26 0.22 21.36 6.65 6.26 6.76

SYNDRONE

13 20 30 6.50 0.10 1.47 5.47 27.68 16.07 0.29 11.89 0.30 62.47 32.97 15.02 13.97
14 50 60 5.88 0.05 0.45 4.70 36.85 31.48 0.09 0.38 0.44 64.83 29.13 15.84 15.47
15 80 90 4.17 0.01 0.25 0.67 37.34 36.11 0.04 0.24 0.38 68.21 41.85 17.75 15.92

Table 13. Models trained on ICG DRONE aligned (h,θ) display better generalization performance . We have trained both SKYSCENES and SYNDRONE
on every subset of (h,θ) provided by the respective datasets. Avg∗ - Average IoU reported over all classes excluding other and terrain(both numbers are
reported since a discrepancy was observed in other and terrain class from SKYSCENES which resulted in overlapping cases across these classes)
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Increasing amount of labeled “real” images [DAFormer UAVid]

Figure 10. [DAFormer UAVid] SKYSCENES can augment “real”
training data. We show how SKYSCENES can additionally augment real
(UAVid [19]) training data. We compare DAFormer [11] models trained
using only 5%, 10%, 25%, 50%, 100% of labeled UAVid [19] images
with counterparts that were either (1) pretrained on SKYSCENES, and
finetuned on UAVid [19] (FT) or (2) trained jointly on SKYSCENES and
UAVid [19] (JT). We find that [Left] additionally augmenting training data
with SKYSCENES and help improve real-world generalization in low-shot
regimes, [Middle, Right] especially for under-represented classes.

(both lowest height and pitch values) – we notice that this
model is extremely sensitive to height variations. From Ta-
bles 15 (a), (e) and (i), we can deduce that due to the high
variability in perspective between θ = 0◦ and other θ ̸= 0◦

conditions, models trained on θ = 0◦ do not generalize well
to other θ values. On the other hand, Tables. 15 (b), (c), (d),
(f), (g) and (h) models trained on oblique perspectives are
better at generalizing to other pitch conditions.

D.4. Qualitative examples

In Fig. 12, 13 and 14, we show qualitative examples
of predictions made by SKYSCENES and SYNDRONE
trained DeepLabv2 and DAFormer models on UAVid,
AEROSCAPES, and ICG DRONE respectively. In Fig. 15
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Increasing amount of labeled “real” images [DAFormer Aeroscapes]

Figure 11. [DAFormer Aeroscapes] SKYSCENES can augment
“real” training data. We show how SKYSCENES can addition-
ally augment real (Aeroscapes [22]) training data. We compare
DAFormer [11] models trained using only 5%, 10%, 25%, 50%, 100%
of labeled Aeroscapes [22] images with counterparts that were either (1)
pretrained on SKYSCENES, and finetuned on Aeroscapes [22] (FT) or (2)
trained jointly on SKYSCENES and Aeroscapes [22] (JT). We find that
[Left] additionally augmenting training data with SKYSCENES and help
improve real-world generalization in low-shot regimes, [Middle, Right]
especially for under-represented classes.

and 16, we show how predictions are impacted by changing
SKYSCENES conditions.
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Training Data Size Synthetic→ UAVid mIoU (↑)
Clutter Building Road Tree Low Vegetation Human Vehicle Avg

SKYSCENES

1 FT 5% 47.60 83.73 62.08 58.98 33.70 23.21 66.36 53.67
2 FT 10% 50.06 86.93 67.70 70.58 58.09 23.47 67.46 60.61
3 FT 25% 57.61 89.37 73.28 73.30 61.15 30.82 73.50 65.57
4 FT 50% 62.44 90.87 75.84 74.75 65.16 35.24 75.52 68.54
5 FT 100% 63.56 91.23 77.03 76.01 66.81 35.14 78.12 69.70

6 JT 5% 52.09 86.83 65.35 68.45 50.06 22.53 69.59 59.27
7 JT 10% 56.23 89.06 71.84 73.23 61.35 26.07 71.25 64.15
8 JT 25% 61.50 90.45 75.98 75.18 64.56 32.65 76.45 68.11
9 JT 50% 65.70 91.68 78.14 76.84 67.29 34.59 77.02 70.18
10 JT 100% 64.19 89.06 74.52 76.59 67.34 37.82 77.06 69.51

SYNDRONE

11 FT 5% 46.58 82.81 59.69 58.95 37.53 21.50 63.78 52.97
12 FT 10% 48.08 85.76 64.56 69.14 54.29 21.91 65.94 58.53
13 FT 25% 56.46 88.78 70.97 72.06 61.14 28.59 73.12 64.45
14 FT 50% 61.70 90.45 73.83 75.48 64.67 33.45 74.98 67.79
15 FT 100% 63.42 91.16 75.75 76.56 66.63 33.53 76.59 69.10

16 JT 5% 49.72 81.39 63.63 65.52 49.00 6.70 70.19 55.17
17 JT 10% 52.94 85.41 67.25 71.47 59.05 23.32 72.43 61.70
18 JT 25% 59.99 87.79 72.26 74.00 65.59 36.32 75.91 67.40
19 JT 50% 63.38 88.88 74.09 74.97 66.85 38.47 77.45 69.16
20 JT 100% 64.06 89.09 74.61 75.98 67.31 40.59 78.40 70.01

Target

21 Target 5% 41.36 80.24 57.07 57.20 25.72 15.35 60.79 48.25
22 Target 10% 42.94 81.50 61.06 67.51 53.32 17.10 63.58 55.29
23 Target 25% 53.57 86.89 69.70 70.95 59.22 28.82 70.91 62.86
24 Target 50% 59.75 89.42 72.58 74.28 64.09 32.89 74.61 66.81
25 Target 100% 62.45 90.76 74.41 75.83 65.65 33.97 76.65 68.53

(a) [DeepLabv2 UAVid ]

Training Data Size Synthetic→ UAVid mIoU (↑)
Clutter Building Road Tree Low Vegetation Human Vehicle Avg

SKYSCENES

1 FT 5% 52.63 88.02 67.74 66.56 49.14 29.53 72.68 60.90
2 FT 10% 57.43 89.48 72.93 74.26 61.96 35.89 75.61 66.79
3 FT 25% 63.43 90.87 78.66 75.59 64.94 40.29 79.05 70.41
4 FT 50% 67.06 92.22 79.76 77.86 68.97 41.90 80.64 72.63
5 FT 100% 67.67 92.51 79.66 78.68 69.03 42.29 81.27 73.02

6 JT 5% 53.72 85.99 66.35 69.02 56.45 35.82 73.51 62.97
7 JT 10% 59.77 87.82 72.97 74.68 64.95 37.63 75.21 67.58
8 JT 25% 63.58 88.68 76.22 75.80 67.49 41.17 78.43 70.20
9 JT 50% 66.83 89.63 77.76 76.90 68.45 43.79 79.41 71.83
10 JT 100% 66.92 89.74 76.89 77.98 68.81 45.32 80.06 72.25

SYNDRONE

11 FT 5% 53.53 87.81 67.31 67.51 55.40 33.94 73.40 62.70
12 FT 10% 56.80 89.64 72.31 74.22 64.12 36.77 75.15 67.00
13 FT 25% 63.77 91.11 78.18 76.17 66.63 41.27 78.90 70.86
14 FT 50% 66.89 92.06 79.14 77.79 69.22 43.32 80.47 72.70
15 FT 100% 67.48 92.48 79.48 78.76 69.73 42.82 81.57 73.19

16 JT 5% 53.54 85.58 64.30 70.07 58.64 29.86 73.21 62.17
17 JT 10% 58.00 87.26 71.23 74.57 64.65 35.58 75.08 66.62
18 JT 25% 61.82 88.35 74.09 75.38 66.43 40.85 78.21 69.31
19 JT 50% 65.10 89.19 75.80 76.95 68.15 40.65 78.52 70.62
20 JT 100% 66.78 89.81 76.56 77.91 69.38 45.34 80.45 72.32

Target

21 Target 5% 51.20 86.59 62.68 66.73 50.46 34.50 71.97 60.59
22 Target 10% 53.95 88.35 70.56 73.65 63.29 35.50 74.12 65.63
23 Target 25% 62.86 90.48 76.89 76.02 66.66 41.03 78.31 70.31
24 Target 50% 66.23 91.84 78.75 77.61 68.44 42.36 79.90 72.16
25 Target 100% 66.67 92.20 79.16 78.35 68.93 41.25 80.70 72.47

(b) [DAFormer UAVid ]

Training Data Size Synthetic→ AEROSCAPES mIoU (↑)
Background Bicycle Person Vehicle Vegetation Building Road Sky Avg

SKYSCENES

1 FT 5% 59.25 4.69 43.11 80.81 91.79 59.32 72.43 89.13 62.57
2 FT 10% 71.45 14.76 47.53 82.43 92.96 60.08 83.92 93.09 68.28
3 FT 25% 72.93 21.78 47.80 81.69 93.42 62.25 84.51 94.30 69.84
4 FT 50% 76.15 23.69 53.11 84.45 93.58 67.00 87.73 94.06 72.47
5 FT 100% 76.91 25.30 53.07 82.27 94.05 67.81 87.78 94.51 72.71

6 JT 5% 67.86 22.42 46.63 87.18 92.11 59.69 85.04 92.31 69.16
7 JT 10% 76.24 30.44 56.33 83.67 92.15 69.39 89.70 94.86 74.10
8 JT 25% 76.33 34.14 53.50 87.87 93.12 68.89 90.23 95.23 74.91
9 JT 50% 78.13 32.06 57.32 87.52 93.23 73.14 90.42 94.69 75.81
10 JT 100% 80.35 32.43 60.14 87.98 94.00 75.20 91.89 95.06 77.13

SYNDRONE

11 FT 5% 57.20 3.79 39.07 77.44 90.79 58.60 69.09 88.48 60.56
12 FT 10% 69.18 14.77 47.07 64.87 92.29 60.42 81.09 91.94 65.20
13 FT 25% 72.21 23.27 44.35 79.72 92.83 63.94 83.31 92.31 68.99
14 FT 50% 74.28 22.32 49.59 81.59 93.01 64.70 85.56 92.81 70.49
15 FT 100% 74.61 22.45 49.13 81.42 93.15 64.18 86.15 92.64 70.47

16 JT 5% 63.05 23.34 46.50 83.30 92.24 64.15 78.81 93.64 68.12
17 JT 10% 74.54 26.14 53.81 81.26 93.01 66.44 88.83 94.62 72.32
18 JT 25% 76.96 33.69 55.34 83.53 93.67 69.00 90.37 95.26 74.73
19 JT 50% 79.35 31.45 59.18 85.80 93.66 74.00 91.27 95.05 76.22
20 JT 100% 79.66 31.82 58.71 86.87 93.75 74.65 91.95 94.20 76.45

Target

21 Target 5% 53.92 7.33 38.25 72.41 90.15 53.49 66.79 87.95 58.79
22 Target 10% 67.08 14.89 39.79 63.76 91.65 58.98 79.45 91.70 63.41
23 Target 25% 70.51 20.69 39.46 76.20 92.34 62.25 82.51 92.56 67.07
24 Target 50% 73.10 20.95 45.23 79.07 92.68 64.70 84.48 92.11 69.04
25 Target 100% 73.21 19.21 44.79 78.44 92.95 63.49 85.34 91.27 68.59

(c) [DeepLabv2 AEROSCAPES ]

Training Data Size Synthetic→ AEROSCAPES mIoU (↑)
Background Bicycle Person Vehicle Vegetation Building Road Sky Avg

SKYSCENES

1 FT 5% 66.93 28.05 46.63 84.56 93.29 64.03 79.76 95.41 69.83
2 FT 10% 76.11 31.60 53.95 88.26 93.92 67.90 88.45 96.25 74.56
3 FT 25% 79.68 39.95 54.07 86.18 94.22 71.31 91.53 95.66 76.56
4 FT 50% 81.09 39.03 58.80 86.25 94.42 76.20 91.15 96.45 77.93
5 FT 100% 81.78 41.22 59.06 85.93 94.62 76.06 91.47 96.40 78.31

6 JT 5% 69.98 33.78 50.09 85.72 93.94 64.09 82.32 95.64 71.94
7 JT 10% 78.47 38.45 57.73 88.98 94.39 67.87 90.23 96.14 76.53
8 JT 25% 81.07 40.95 53.79 88.60 94.30 71.92 92.76 95.77 77.39
9 JT 50% 81.55 39.43 64.25 89.16 94.30 76.81 91.34 96.30 79.14
10 JT 100% 83.13 44.90 60.14 89.55 94.93 79.55 92.49 95.83 80.06

SYNDRONE

11 FT 5% 70.94 29.02 47.17 82.25 93.23 64.19 83.31 93.27 70.42
12 FT 10% 76.62 29.13 60.31 86.91 93.80 66.29 89.80 95.65 74.81
13 FT 25% 78.97 34.86 57.69 86.06 93.83 69.73 92.03 95.33 76.06
14 FT 50% 80.28 34.42 63.33 85.34 94.31 73.71 91.55 95.69 77.33
15 FT 100% 80.90 35.47 62.18 85.43 94.45 74.45 92.12 95.76 77.59

16 JT 5% 69.12 30.82 53.16 81.33 93.19 61.11 83.80 95.36 70.99
17 JT 10% 77.38 40.42 57.80 88.32 94.14 68.06 90.24 95.60 76.47
18 JT 25% 80.64 44.19 53.95 89.80 94.28 71.89 92.58 96.14 77.94
19 JT 50% 81.82 40.86 63.15 89.20 94.38 77.72 92.29 96.43 79.42
20 JT 100% 79.38 35.85 50.91 86.01 94.08 70.88 90.73 94.32 75.27

Target

21 Target 5% 66.26 24.03 47.34 81.04 92.88 58.85 78.11 90.85 67.42
22 Target 10% 74.91 32.00 52.74 82.18 93.62 59.63 88.73 94.00 72.23
23 Target 25% 78.16 41.22 53.29 84.76 93.95 66.04 90.92 95.28 75.45
24 Target 50% 80.09 38.73 58.11 84.89 94.14 73.72 90.85 95.61 77.02
25 Target 100% 80.35 42.65 57.99 87.58 94.48 72.65 91.20 95.51 77.80

(d) [DAFormer AEROSCAPES ]

Table 14. SKYSCENES can augment “real” training data. We compare SKYSCENES against SYNDRONE for their ability to augment real training data.
We compare DAFormer [11] and DeepLabv2 [3] models trained using only 5%, 10%, 25%, 50%, 100% of labeled real dataset images (UAVid [19] and
AEROSCAPES [22]) with counterparts that were either (1) pretrained on SKYSCENES/SYNDRONE, and finetuned on real dataset images (FT) or (2) trained
jointly on SKYSCENES/SYNDRONE and real dataset images (JT). We find that both FT and JT with SKYSCENES outperforms or is on par with SYNDRONE
in almost all of the different labeled data splits.
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Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 72.57 66.38 57 39.46
2 h = 35m 59.07 55.55 54.43 39.23
3 h = 60m 48.58 44.94 43.85 31.71

(a) Height 15 & Pitch 0◦

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 59.03 66.98 63.07 61.85
2 h = 35m 43.8 49.41 49.91 45.19
3 h = 60m 34.27 39.86 40.1 35.42

(b) Height 15 & Pitch 45◦

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 45.36 64.13 68.88 69.28
2 h = 35m 30.49 45.05 50.39 53.44
3 h = 60m 21.86 31.21 36.51 38.43

(c) Height 15 & Pitch 60◦

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 30.61 55.79 64.98 71.93
2 h = 35m 16.84 33.2 37.89 48.63
3 h = 60m 11.26 21.12 26.38 31.22

(d) Height 15 & Pitch 90◦

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 52.14 47.62 39.04 29.31
2 h = 35m 58.03 55.61 55.07 45.54
3 h = 60m 53.31 50.38 50.23 46.65

(e) Height 35 & Pitch 0◦

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 48.50 50.71 45.22 42.21
2 h = 35m 50.49 55.74 57.11 52.19
3 h = 60m 45.33 49.79 50.37 44.62

(f) Height 35 & Pitch 45◦

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 37.21 49.04 47.42 44.93
2 h = 35m 34.37 52.67 57.52 54.14
3 h = 60m 29.82 44.36 48.33 44.71

(g) Height 35 & Pitch 60◦

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 28.73 40.11 44.9 46
2 h = 35m 25.89 38.98 46.26 54.02
3 h = 60m 20.36 29.95 36.1 43.16

(h) Height 35 & Pitch 90◦

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 37.59 32.89 24.53 18.35
2 h = 35m 48.42 44.31 42.82 32.04
3 h = 60m 51.53 48.38 47.71 39.45

(i) Height 60 & Pitch 0◦

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 43.01 43.33 35.6 31.05
2 h = 35m 52.13 57.6 58.84 51.95
3 h = 60m 51.89 56.83 56.43 50.07

(j) Height 60 & Pitch 45◦

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 38.58 43.4 36.96 32.22
2 h = 35m 44.69 57.52 60.21 54.3
3 h = 60m 43.24 56.68 59.27 49.18

(k) Height 60 & Pitch 60◦

Test mIoU (↑)

Height Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 28.12 34.9 33.6 33.28
2 h = 35m 32.76 45.32 53.71 55.27
3 h = 60m 29.58 42.59 50.73 57.07

(l) Height 60 & Pitch 90◦

Table 15. Model Sensitivity to changing Height and Pitch. We evaluate a model trained on one h, θ variation (indicated by sub-table caption) across all
other h, θ variations. Performant conditions are highlighted in blue.

Figure 12. Synthetic →UAVid Semantic Segmentation Predictions Out-of-the-box semantic segmentation predictions made on randomly selected
UAVid [19] validation images by models trained on SKYSCENES and SYNDRONE. The first two columns indicate the original image and the associated
ground truth respectively, columns 3 (SKYSCENES) and 4 (SYNDRONE) indicate predictions by DeepLabv2 [3] models and columns 5 (SKYSCENES) and
6 (SYNDRONE) indicate predictions made by DAFormer [11] models.
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Figure 13. Synthetic →AEROSCAPES Out of the box semantic Segmentation Predictions Out-of-the-box semantic segmentation predictions made on
randomly selected AEROSCAPES [22] validation images by models trained on SKYSCENES and SYNDRONE. The first two columns indicate the original
image and the associated ground truth respectively, columns 3 (SKYSCENES) and 4 (SYNDRONE) indicate predictions by DeepLabv2 [3] models and
columns 5 (SKYSCENES) and 6 (SYNDRONE) indicate predictions made by DAFormer [11] models.

Images Ground Truth

DeepLabV2

SkyScenes SynDrone

DAFormer

SkyScenes SynDrone

other fence pole vegetation building water bicycle vehicle person paved area terrain

Figure 14. Synthetic →ICG DRONE Out of the box semantic Segmentation Predictions Out-of-the-box semantic segmentation predictions made on
randomly selected ICG DRONE [14] validation images by models trained on SKYSCENES and SYNDRONE. The first two columns indicate the original
image and the associated ground truth respectively, columns 3 (SKYSCENES) and 4 (SYNDRONE) indicate predictions by DeepLabv2 [3] models and
columns 5 (SKYSCENES) and 6 (SYNDRONE) indicate predictions made by DAFormer [11] models.
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Figure 15. Semantic Segmentation predictions across different daytime variations Semantic segmentation predictions made on on held-out
SKYSCENES images across all daytime variations by a DAFormer [11] model trained on select daytime variations. The first two columns indicate the
original image and the associated ground truth, column 3 is predictions by model trained on Noon subset, column 4 is predictions by models trained on
Sunset subset and column 5 is predictions by model trained on Night subset.
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Figure 16. Semantic Segmentation predictions across rural and urban town variations Semantic segmentation predictions made on on held-out
SKYSCENES images across rural and urban scenes by a DAFormer [11] model trained on rural and urban scenes respectively. The first two columns indicate
the original image and the associated ground truth, column 3 is predictions by model trained on rural scenes subset, column 4 is predictions by models
trained on urban scenes subset.
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